
Conversational Access to a

2 0 4 8 - W o r d Machine

MARY ALLEN WILKES

Washington University,* St. Louis, Missouri

LAP6 is an on-line system running on a 2048-word LINC which
provides full facilities for text editing, automatic filing and file
maintenance, and program preparation and assembly. It
focuses on the preparation and editing of continuously dis-
played 23,040-character text strings (manuscripts) which can
be positioned anywhere by the user and edited by simply
adding and deleting lines as though working directly on an
elastic scroll. Other features are available through a uniform
command set which itself can be augmented by the user.

The machine, although small, aids program design by pro-
viding display scope and premarked randomly addressable
LINC tapes as standard items, in an environment similar to that
of a sophisticated terminal. The tapes are logically similar to a
disk. Priority was given to the design of efficient tape algo-
rithms to minimize the limitations of the small memory. Tech-
niques developed for handling scroll editing, filing, and the
layered system structure are outlined.

LAP6 is used by about 2000 people in 11 countries. Its de-
sign was strongly influenced by performance criteria estab-
lished in interviews held with the LINC users themselves during
the specification period.

KEY WORDS AND PHRASES: conversational computer access, display edit-
ing, display oriented system, filing algorithms, LAP6, layering, LINC, man-
machine communication, on-line editing, on-line efficiency, on-/ine environment,
scroll editing, small machine system, tape filing, tape oriented system, text
editing
CR CATEGORIES: 3.73, 4.10, 4.11, 4.19, 4.22, 4.30, 4.40, 4.41

In troduct ion

An operating system which runs efficiently in a "conver-
sational mode" is a necessity for a computer which is
operated solely as an on-line machine. When the computer
is a LINC, with 2048 12-bit words of memory, the chal-
lenge of producing a useful system forces the careful
evaluation of both techniques and attitudes in order to
provide operating flexibility generally deemed possible
only on much larger machines. I t is the intent of this
paper to describe the LINC operating system, LAP6, and
hopefully thereby to provide some insight into the evalua-
tion process influencing program design in the on-line
environment.

LAP6 is used to generate and edit text strings and to
manipulate file entries (save, retrieve, replace, delete, or
copy). Text strings formatted as LINC source programs

* Compute r Systems Labora tory . This work was suppor ted by the
Divis ion of Research Faci l i t ies and Resources of the Nat iona l
Ins t i tu t e s of H e a l t h under grants FR-00218 and RR-00396.

are converted to binary machine form, filed, loaded, and
checked out within the LAP6 framework.

The challenge of producing a useable system for the
LINC is nothing if not enhanced by the size of the core
memory. Of the 2048 words, only half are programmable.
The other major factors influencing LINC program design
are the machine's well-integrated in/out elements, the
particular requirements of the on-line environment, and
the needs of the LINC users themselves.

The Machine

The LINC [1] is easy to use and provides an intimate,
uncluttered working environment. A keyboard is the main
source of digital input, and a well-designed console provides
sophisticated features for on-line program check-out,
reducing the need for software debugging aids. The LINC
is programmed almost entirely in "machine language."

The inclusion of a display scope and of magnetic tape
units in a general purpose machine specification is still
rare among small computers on the market. Although
on-line program design is profoundly affected by the
operating characteristics of associated peripheral devices,
these devices are frequently not standard from machine
to machine, and almost never well integrated. The result
is that system programs organized around a "minimum"
set of peripherals are considerably weakened in an effort to
provide software which "everyone can use."

By contrast, the fact that every LINC user has at least
a scope, two magnetic tape units, and a keyboard greatly
simplifies a number of design choices without sacrificing
sophistication to generality. The LINC tapes themselves
are unusual 1 in that their random addressability makes it
possible to use them the way a disk or even a larger core
memory might be used in another environment; their
design, which evolved from that developed for the TX-2
computer at Lincoln Laboratory [2], is remarkably well
suited to symbol manipulation tasks.

The pocket-sized tapes belong exclusively to their
individual users who are responsible for allocating tape
contents. Operating system filing algorithms can be kept
relatively simple since questions of shared files do not
arise. Similarly, since the system itself resides only on its
user's tape, it becomes "his" system, retaining from day
to day his data and programs without resetting.

The fact that in the LINC environment there are at
least as many tape copies of a program as there are users
of that program has other implications affecting reliability
and standardization. A program once issued is not changed

The tapes are premarked under program control on the computer .
Each contains 512 consecut ive ly-numbered 256-word blocks, in
fixed posi t ions on the tape, r andomly addressable by block num-
ber. Transfers between tape and memory are always handled in
block uni ts . A single L INC ins t ruc t ion can select a tape uni t ,
s t a r t the tape motion, find the reques ted block, and make and
check a t ransfe r of from one to e ight sequent ia l blocks (one full
core memory) of informat ion. The L I N C searches for a block as
the tape is moving e i ther forward or backward; i t t ransfers in-
fo rmat ion in the forward direct ion only.

V o l u m e 13 / N u m b e r 7 / J u l y , 1970 C o m m u n i c a t i o n s o f t h e ACM 407

lightly, and it must be documented well enough that its
user can determine at any time whether his copy is an
accurate reflection of a specified standard.

The size of the core memory has its most direct influence
on system structure. LAP6 is segmented into 11 "layers"
which are held on the tape and read into the memory
under program control as needed. This is a fairly simple
procedure with a premarked tape; if some care is taken
with the segmenting and tape layout, the result need not
be inefficient for the on-line user.

The small memory has had surprisingly little effect on
the functional specification of the system. I t was possible
to include most features felt to be essential in any good
machine language operating system. The necessity, how-
ever, of producing highly efficient code for the small mem-
ory accounted for a nonnegligible one third of the pro-
gramming time.

reached. Several guidelines operated on the design of
LAP6 toward the ultimate goal of providing brief docu-
mentation which can be set aside after the introductory
sessions with the system [3]. The 17 system commands
(Table I) have nearly identical formats with arguments
of only three types, always supplied in the same order.
Arguments are simply omitted if not needed. For 14 of
the commands this single statement fully specifies the
requested function.

A command repertory can be tr immed by including only
those functions over which the user needs explicit control.
Operations which properly belong to "system mainte-
nance" are those most irritating to regular users and most
unsettling to users with no prior computer orientation.
With LAP6 we found that "packing" operations, text
line number sequencing, tape positioning, and creating

T h e O n - l i n e E n v i r o n m e n t

The LINC environment is similar to tha t of on-line
terminals equipped with scope and keyboard, and the
LINC experience suggests what can be expected of this
environment, especially when small tapes, such as the
recently popular cassettes, and perhaps some memory are
added to such terminals. Perhaps the most important de-
mand made on the on-line environment is efficiency, not
only machine efficiency, but a parallel component which
might be called "user efficiency."

Machine efficiency is frequently regarded as a measure
of response time, or the time elapsing after the user initi-
ates one action and before he can initiate another. In the
LINC environment the response time is determined not
by the rate of service to one of perhaps several terminals,
but almost entirely by local tape motion characteristics.
Since these are directly measurable, response time can be
optimized, and tape algorithms correctly dominate most
LINC program design.

Solutions to questions of user efficiency probably defy
optimization. However, if "man-machine interaction" for
its own sake is not the goal, some effort must be expended
to make proper use of the user's energies. A survey of
LINC users revealed that their primary concerns, in addi-
tion to machine efficiency, were reliability and simplicity.
One concise, if frustrated, user simply said, "I don' t care
where it files the program, I just don' t want it to ask a lot
of questions." A degree of arbitrariness on the part of the
operating system is perhaps invited. The specific user
efficiency considerations most profoundly influencing
LAP6 relate to what the user can reasonably be expected
to remember, what actions he can reasonably be expected
to take to accomplish a task, and what control he feels he
has over the program and the machine.

I t is especially tiresome in the on-line situation to have
to refer to documentation to recall an operating procedure
detail or the significance of an "error message." Although
a minimum set of functions must be provided, the thresh-
old of both the user's memory and his patience is quickly

TABLE I. LAP6 META COMMAND SUMMARY
(User supplies the underlined information; parentheses

identify optional arguments.)

-.-)LN

--~__Save _M_anuscript (LN,
(LN,)) NAME, UNIT

--+Add Manuscript NAME,
UNIT

--,Display Index UNIT

--~Copy ._Manuscript NAME,
UNIT

--*Copy Binary NAME,
UNIT

--+Copy File UNIT

:--)ConVert

-~_Displ ay Symbols

-*Save _Binary NAME,
UNIT

--~EXit

-oLOad Binary (NAME,
UNIT)

--~___Free

--~__CoPy

-+__.Print Index UNIT
--~_P_rint ..Manuscript (LN,

(LN,)) (NA1ViE, UNIT)
---,List (LN, (LN,))

(NAME, UNIT)

Move scroll to line LN
Scroll manuscript to file; with

replace option
Filed manuscript to scroll, "in-

serted" at current line
File Index to scope; with delete

option
Manuscript from file to file; with

replace option
Binary program from file to file;

with replace option
All non-duplicate file entries from

file to file
Current scroll manuscript to cur-

rent binary; with displays
Symbol table of current binary to

scope
Current binary program to file;

with replace option
Current status of LAP6 to tape

for later access
Exit; binary program to memory

Exit; user's meta command layer
to memory

User specifies tape transfers in
response to displayed questions

File Index to teletype
Manuscript to teletype; for-

matted and paged as text
Symbol table and program listing

to teletype

408 Communications of the ACM Volume 13 / Number 7 / July, 1970

and erasing file indices could all be handled automatically,
and usually more efficiently, by the program.

Text editing operations, probably the most important
in terms of the user's time, responded dramatically to a
simplification effort, the specific actions required of the
user being reduced to finding his place in the text using
the scope and to adding or deleting information at tha t
place. Explicit editing commands do not appear; the user
edits a text string directly without specifying the editorial
function or its bounds.

A simple "NO" appears on the scope during filing opera-
tions when a file or its index is full or when a requested
file entry is not found. This is the only "error" indication
which LAP6 does not a t tempt to handle automatically
and has no effect on the status of the system or the user's
ability to continue. Other ambiguous situations are re-
solved automatically by LAP6 as defined in the users'
documentation.

The sense of control a user feels he has over the system
is a major factor in making him comfortable using it and
can be completely destroyed by an unreliable program.
Providing real reliability can add considerably to the pro-
gramming investment since it involves not only removing
the errors but incorporating certain generally unseen safe-
guards which protect the interaction between user and
machine, regardless of what demands the user may make.
Such things as alarming or ambiguous, even if harmless,
system behavior must be eliminated; simply put, it should
not be possible for the program to go into a state which
the user does not understand.

The major LAP6 characteristics contributing to the
user's sense of control are its documentation, its mechani-
cal operation, and its structure. An effort was made to
match closely the program's behavior to that claimed for
it in the documentation, so that the user need not hesitate
to follow the documentation exactly. In mechanical opera-
tion, keyboard actions having an irreversible effect on tape
contents, such as erasing file entries, are denied automatic
execution by being isolated from the formal command
structure. The explicit system commands are all harmless
in this respect, since none automatically replaces or deletes
information, and a user can be comfortable guessing a
command format or making typing errors. A command in
execution, which may take several seconds, can be inter-
rupted. Unrecognizable command statements are simply
ignored.

Knowledge of the structure of LAP6, its files, indices,
text strings, and tape layout, is not required for system
operation. The structure has, however, been kept deliber-
ately simple and is documented for the user for two rea-
sons. First, it simplifies programmed interaction with the
system. Second, the rare events of machine, tape, or pro-
gram failure can never be entirely prevented. In an en-
vironment where it is possible to watch tapes move, how-
ever, the general transparency of system structure can
turn normal response time delay into constructive feed-
back, reassuring the user and simplifying the problem of

detecting real failure. Should this happen, explicit recovery
procedures make it possible for the LAP6 user to recover
fairly gracefully.

T h e LINC Users

The first L INC users, participants in the LINC Evalua-
tion Program [4] sponsored by the National Institutes of
Health, 2 were biological research professionals with
little or no computer experience, selected specifically to
evaluate the LINC as a tool in their particular research
environments. LAP6 was written in partial fulfillment of
the laboratory's commitment to this Evaluation Program
group. Two months were spent canvassing these users and
visiting their laboratories to observe both working environ-
ment and working habits.

The evaluators influenced both the number and func-
tional characteristics of the system's commands, as well as
the definition of its automatic filing capabilities. The edit-
ing facility, the program's most powerful feature, probably
would not have been at tempted without their stimulus.

Both the number of users (about 2000 in 1969) and their
physical distance reinforce the several concerns with per-
formance criteria already expressed. I t is necessary for the
LAP6 user to be able to understand and run the system
on his own, using tape and documentation which arrive
in the mail.

S y s t e m S t r u c t u r e

LAP6 structure is determined solely by the allocation
of tape blocks, as shown in Figure 1. The current binary
area holds the user's program currently being checked out.
A LAP6 text string held in the scroll area is identified as
the current manuscript, which the user is currently prepar-
ing or editing. Unused blocks are reserved as "scratch
area" for the user.

The Index and file of stored programs and manuscripts
are optional on any tape, and they need not be on the
LAP6 tape itself. Although only one tape is required for
a complete system, it is usually more efficient to use two
for file operations.

The size of the scroll area and the file area vary with
different configurations of LAP6, the only limiting factor
being the capacity of the tape. 8 The standard configura-
tion shown has been found reasonable for most users.

O p e r a t i o n

The LAP6 user mounts his tape, executes a "read tape"
instruction at the console, and pushes a start button. A
display of the current manuscript appears. Thereafter
the program is controlled from the keyboard. The user
can type either manuscript or system meta commands
(Figure 2). The manuscript, however, is the focus of
LAP6, and manuscript manipulation is its normal "mode."

In conjunction with the National Aeronautics and Space Ad-
ministration under NIH contract PH 45-63-540.

The actual tape locations of the various elements are assigned
parametrically when the system is assembled.

Volume 13 / Number 7 / July, 1970 Communications of the ACM 409

Manuscript. A LAP6 manuscript is any useful collection
of keyboard characters. There are no format restrictions,
and the line length is virtually unlimited. LINC source
programs are the most typical, 4 but applications include
other programming languages [5, 6], flow charts [7], mole-
cule descriptions [8], and bibliographies.

The current manuscript, continuously displayed, moves
forward automatically as the user types. The line numbers
on the left of the lines (Figure 2) are supplied by LAP6.
The user can vary the number of lines displayed by rotat-
ing a potentiometer as he looks at the scope.

S c r o l l E d i t i n g

The user can look at, and change, any part of the cur-
rent manuscript at any time. For example, in Figure 3(a)
the manuscript is located at line 3132; the viewer indicates
that he wants to see line 27 by typing "-+27". He strikes
the line terminator, and sees Figure 3(b). Perhaps he
meant to replace line 25 with two new lines. He uses a
special key combination twice to "back up" to Figure
3(c). He strikes the delete key, giving Figure 3(d), and
types his two lines, Figure 3(e), which become lines 25 and
26. (Or perhaps he adds the two new lines at 3(c) before
backing up and deleting line 25, or some combination. The
order is unimportant.)

If the viewer now looks forward a few lines, he will see,
Figure 3(f), his changes integrated in the surrounding
manuscript and may notice that the former line 27, Figure
3(b), is now line 30. The former line 3131, where he began,
is likewise now line 3132, which he will see the next time
he looks at that part of the manuscript--that is, if he
makes no more changes in between.

A few points suggested by the illustration can be illumi-
nated:

1. THE SCROLL. The manuscript appears to move as
a scroll, and is in fact treated by LAP6 as a scroll winding
onto the two tape hubs. The unfurled part of the scroll,
over the tape head, is displayed.

2. POSITIONING THE SCROLL. The viewer moves
the scroll in either direction, displaying different portions.
The motion is directed either by typing a line number (as
"-~27") or by striking one of four undisplayed key com-
binations (chosen to lie under the left hand) which move
the scroll forward or backward, one frame or one line. The
options simulate, rather crudely, forward and backward
pushbuttons, with scroll motion stopping as the button
is released. In the discrete situation the line numbers are
usually used for gross adjustments and the key combina-
tions for "fine tuning."

3. EDITING. The scroll is edited directly, as it moves
across the scope. No distinction is made between input
and editing, and there are no editing commands. The last
line number displayed, e.g. "25" in Figure 3(d), identifies
the viewer's current line. A line can always be added at
the current line. The current line number is automatically

4 The acronym for LING Assembly Program is historical. The
LAP6 language is adequate, but unremarkable.

410 C o m m u n i c a t i o n s of the ACM

File
(184 blocks)

Unused
(8 blocks }

LAP6
(32 blocks)

Current Binary
(8 blocks)

Scrol l
(Current

Monuscr ip,)
(45 b locks)

File Index
(2 blocks)

File
(232 b locks)

FIG. 1. LAP6 tape organization

Fie. 2. Manuscript display

incremented when the line being added is terminated. A
line is deleted at the current line, or if "empty," the cur-
rent line minus one. The current line number is appro-
priately decremented.

Less obvious from the illustration is the fact that the
viewer can add or delete as much information as he likes
wherever the scroll is located. Using the ADD MANU-
SCRIPT command, for example, a filed manuscript can be
added to the scroll at the current line, amounting to insert-
ing one manuscript in the middle of another.

4. LINE NUMBERS. The line numbers simply pro-
vide relative "you-are-here" information. They remain se-

Volume 13 / Number 7 / July, 1970

3 (a) 3(b)

:i:i :!!i~!~::: .:i.i::~::::: ::~
22 i li../i
2:1!~ iiii~:i.00
2::i • ~i~2~ ~ iiiiiii!iii: ..; 2i!!~

3(c)

ii!:.:i. :!!ii(:: .:i.:::':::'2 ii!:i:: i!!.:!
2;i!i i i i . . , i : :.~ ~..~.~. :
2:1!; i::~:!.O ii : !!!~ i:ii~i,,:
11!% ,~;i!:~ ~ i:;~i::~(:: ..; :::'i!:; ~...:!i:]i: ~:::i..J:i
• : : . ; : : 2::::

3(4) 3 (e)

FIG. 3. Scroll editing
3 i f)

quential integers and are thus effectively renumbered by
LAP6 every time a change is made. Although the viewer
uses them to go to a line which is approximately where he
wants to be, he always uses the "content vernier" pro-
vided by the display to insure that he is at the right spot.
He is never required to know a line number in order to
edit, nor to resequence the numbers.

From the standpoint of positioning the scroll the num-
bers are not essential, although some guide to the scroll's
relative position is useful, especially with long manuscripts
which may have no intrinsic order. The exact numbers,
however, are more important in conjunction with some of
the meta commands (Table I).

The fact that the line numbers change dynamically is
popular with users. I t focuses at tention on the displayed
content, and makes the editing process both faster and
less error prone than schemes which permit blind editing
with reference to arbitrarily assigned identifiers. The
changing numbers also reassure the viewer; as he looks at
subsequent portions of the scroll, he is frequently aware
that the numbers are now higher or lower, confirming the
effect of his earlier editorial corrections.

Manuscript Structure. A LAP6 manuscript is an un-
segmented string of keyboard codes stored in consecutive
tape blocks, in exactly the same order as they appear on
the scope. This simple structure makes it easy for users
either to generate or to employ manuscripts in other con-
texts.

The LINC Macro Expander is an example [5]. I t uses a
LAP6 manuscript of macro statements and definitions as

V o l u m e 13 / N u m b e r 7 / Jn ly , 1970

input, and returns as output a LINC source program
manuscript. Providing the macro language capability
thus reduces to the problem of translating one manuscript
into another. LAP6 is used to generate and edit the former,
and assemble the latter. Either can be filed.

Editing Efficiency. LAP6 is used most frequently as a
manuscript preparation tool, and efficient manuscript
manipulation is critical. The LAP6 tape moves frequently,
but briefly, during most editing activity. For the situation
in which a number of changes must be made throughout a
manuscript, the scroll editing technique is remarkably
efficient.

Editorial perturbations to the scroll are localized, and
their frequency minimized, by a compensatory deleting
effect inherent in the editing algorithm [9, 10]; deleted
characters compensate for added characters.

The tape motion which may result from editing near the
boundary of a scroll block, being independent of the
viewer's context, is sometimes surprising but not objec-
tionable. Since the relevant part of the scroll is always
over the tape head, there is no tape travel time loss, and
the display is interrupted only for about 0.1 second, about
the time it takes to strike a key.

Positioning the scroll, on the other hand, can introduce
delays when the manuscript is long; the user quickly learns
tha t sequential editing, although not required, is more
efficient than random editing. To minimize these delays
LAP6 uses a combination of techniques which move the
scroll at either 23 blocks per second, or one block per
second, depending on the status of the manuscript. The

C o m m u n i c a t i o n s of the ACM 411

23 to 1 saving is considerable when the viewer is simply
moving the scroll and reading, as for example, when first
finding his place in the manuscript.

I t must also be remembered that when the user positions
the scroll he expects the tape to move, and in fact watches
it as it goes toward the requested portion. There is a
psychological acceptance of the delay inherent in this
cause and effect situation that is absent, for example,
while editing, when only an immediate response is really
tolerable.

In any case, the delays do not, in general, predominate.
Since the burden is on the viewer to identify the context,
he tends to spend as much time reading the scope as he
does moving the tape, even when actively editing.

The standard 45 block scroll size (23,040 characters)
has been found generous for most applications on the
2048-word LINC. No more than 2 blocks, however, are
ever manipulated in the memory at one time, malting the
scroll editing technique attractive for small machine im-
plementation. Longer manuscripts are equally efficiently
handled if a device with faster transfer characteristics,
such as a disk, is used to hold the scroll.

Meta Commands

The meta commands provide access to a basic set of
operating features such as for manipulating file entries or
loading programs. All use the scope or tapes, or both, in
their execution.

The user states a meta command directly at any time,
regardless of the position of the scroll or the extent of
editing (Figure 2). I t is executed when the line terminator
is struck, and erased from the manuscript display to
which LAP6 returns automatically. Execution of a meta
command (except ADD MANUSCRIPT) does not affect
the current manuscript.

Italics in the Table I summary identify command argu-
ments. LN means a manuscript line number is to be
supplied; NAME, the name of a file entry; UNIT, the
number of the tape unit holding the file. Parentheses
indicate optional arguments. For example, the command
"--+SM G R A P H I C , i " saves the current manuscript under
the name G R A P H I C in the file on tape unit 1, whereas
the command "--~SM 2,603,GRAPI-IIC,i" saves only lines
2 through 603 of the current manuscript, etc. The com-
mand "-+LO" loads the memory with the current binary
program (the one last assembled), whereas "--~LO
G R A P H I C , i " loads a named, filed program.

Preparation of a L INC program illustrates command
usage. The user enters his source program at the keyboard,
doing any editing that may occur to him as he looks at
his current manuscript. If his program is to run with, for
example, a filed subroutine, he retrieves it with the ADD
M A N U S C R I P T command. LAP6 adds the subroutine
manuscript to the current manuscript and returns to the
manuscript display, now showing the end of the added
manuscript on the scope.

The CONVERT command puts the binary version of
the current manuscript onto the tape, and presents up to
three displays showing: (1) symbol definition errors, if
any, with their associated manuscript line numbers; (2)
inclusive memory locations required by the binary pro-
gram; (3) the symbol assignment table. The latter can be
redisplayed at any time with the DISPLAY SYMBOLS
command.

Single key options permit the viewer to step between
these displays or return to the current manuscript display.
If there are errors, he probably returns, corrects the errors,
and converts the manuscript again.

The LOAD command transfers control to his program
in the memory. The user generally leaves the LAP6 tape
in place so that he can return quickly to look at the sym-
bol table or to correct and reassemble the manuscript.
The accessibility of the current manuscript has several
implications. The "patch" technique has generally been
eliminated from program check-out. "Binary" relocation
is handled at the manuscript level, and the need for
printed copy, although available, is greatly reduced.

The user can remove his tape at any time. When he
returns to the computer and starts LAP6, his current
manuscript, binary program, and symbol table are still
intact. He eventually files the current manuscript or pro-
gram ("--~SM" or "--~SB"). If there is already an entry
with his requested name in the selected file, LAP6 pi'otects
it by displaying "REPLACE?" and requires him to strike
a decision key before continuing. Otherwise LAP6 files the
entry as directed and returns to the manuscript display.

The user leaves the computer by typing "--~EX" and
removing his tape. The EXIT command is necessary only
if he still wants to retain the current manuscript.

Filing

Any file tape can be mounted on either tape unit. I t is
distinguished from a nonfile tape simply by the presence
of an Index. Manipulating entries in tape files is straight-
forward, and combinations of meta commands are used
when flexibility or structural control is desired.

Two file commands, SM and SB, move information
from the LAP6 area on the tape into the file on either
unit; three others, Ci~, CB, and CF, move information
from the specified file to the file on the other unit, thus
requiring two tapes. Since the LINC tape units are in-
dependently controlled, the position (block numbers) of
the information being read from one tape is unrelated to
the position in which it will be written on the other tape.

Index. A file tape contains a 2-block Index which can
describe 126 file entries for the tape. The Index is created
automatically when the first file command is issued to tha t
tape, and erased from the tape when the last file entry is
deleted. There are no commands for creating or erasing
files or file indices.

An Index can be displayed or printed. The Index display
(Figure 4) is responsive to the keyboard in a manner simi-
lar to the manuscript display in tha t it can be positioned

412 Communications of the ACM Volume 13 / Number 7 / July, 1970

FiG. 4. LAP6 file index

in either direction and entries deleted with the delete key
as the viewer reads. For protection LAP6 requires that
the typist strike a decision key to make the deletions
permanent. The "gaps" thus created between entries are
automatically available to LAP6 for subsequent filing
operations.

File Entries. A file entry is anything described in a file
Index (Figure 4) as having a unique name with respect to
others of its kind and as having some blocks (~ BLKS) in
the file area assigned to that name. LAP6 distinguishes
manuscript entries (iV[) and binary program entries (B) as
different kinds, which may, therefore, have the same name.

Filing Algorithm. File entries are variable and unre-
stricted in length, and the allocation of blocks within the
file is freely formatted by LAP6 as entries are filed and
deleted. The filing algorithm is influenced by the premise
that a file Index is somewhere near the middle of the file
area (so that no one entry can be more than half a file
length away). I t is, however, unaffected by LAP6 con-
figurations for which this is not the case (specifically those
with one-sided files), and is the same for all file commands:
an entry is ahvays saved in those contiguous, unassigned
blocks which are (1) in the file area, (2) nearest the Index
(either side, Figure 1), and (3) in which the entry will fit.
The algorithm implies that, until entries are deleted, a
file is ahvays "packed" and its entries balanced around
the Index, i.e. the two furthest entries are approximately
equidistant from the Index.

Exercising the "replace" option thus does not mean that
the namesake entry will physically occupy the same blocks
as its ancestor. Tape travel time forces the simplicity of
the algorithm, but its absolute predictability is sometimes
useful. Inspection of the Index always shows where the
next entry will be filed.

File Organization. Most of the time the user is not
concerned with the file organization. He has, however,
various ways of influencing it when either absolute or
relative entry position is important. With a tape dependent
system it is necessary to be able to reorganize files easily
and quickly, perhaps moving certain entries closer to the
operating system, or constructing a file with only binary
programs, or simply balancing all present entries around
the Index for more efficient general access.

The user can create the file Index himself as a LAP6
manuscript, allocating the absolute blocks of the file area
in any convenient way, or by virtue of the filing algorithm,
he can control the relative tape positions by the order in
which he states file commands. To create an ordered file
of binary programs, for example, from a mixed general
file, or files, of programs and manuscripts, he has LAP6
execute successive COPY BINARY commands from the
mixed file(s) probably into a new file, stating the com-
mands in the order in which the programs are to be placed
in the new file. LAP6 creates the Index if necessary, allo-
cates the tape blocks for the new file according to the
algorithm, and optimizes the tape motion of both tapes.

Copy File. Combinations of single entry file commands,
such as COPY BINARY, and the COPY FILE command
provide further flexibility when organizing files. COPY
FILE copies all entries from some "File I " into some
"File I I , " except for duplicate entries already present in
File II. Thus, following single entry filing operations,
COPY FILE can be thought of as copying all the "re-
maining" entries.

Tape efficiency is optimized as for the other commands.
Entries transferred into File I I are packed and balanced;
entries on one side of the File I Index may therefore ap-
pear on the other side in File II. In addition, both tapes
are handled with the fewest "search reversals," i.e. the
fewest changes of direction of motion due to searching.
This means that the File I tape is entirely read with two
reversals, and the File II tape entirely written and checked
with four, regardless of the number or position of the
relevant blocks or gaps on either tape. Given this type of
tape, no faster method of tape file copying exists [11].

L a y e r i n g

Segmenting programs into layers, which are read into
the memory from the tape only as needed, is necessarily
common LINC practice. In the LAP6 case layering has
some advantages, and the time required to change layers,
about 1 second, is negligible in the on-line situation.

LAP6 is started (or reentered) with the "manuscript
display layer" which handles keyboard input and display
of manuscript and meta command statements, all scroll
editing activities, and decoding and dispatching of layered
meta commands. Most other layers return directly to this
layer without further layering activity.

LAP6 has no resident control program. When the
layer currently in control calls the next layer from the tape
it makes the entire memory available to it. User designed
features, or programs which interact with the system,
likewise have no restrictions placed on the use of the mem-
ory.

Layering Tape Instruction. Layering is greatly simpli-
fied by the power of the LINC's tape instructions which
can be used the way a resident operating system uses
" jump" instructions to transfer control between major
segments of the program. This is perhaps best illustrated

Volume 13 / Number 7 / Ju ly , 1970 C o m m u n i c a t i o n s o f the ACM 413

when the active layer must read over itself, as when the
incoming layer occupies the entire memory. The layering
"rout ine" consists of one read tape instruction. When
this instruction is executed, the computer gets the next
instruction as usual but takes it f rom the incoming layer.

Although this fixes the layer 's entry point arbitrarily,
it standardizes the linkage and makes communication
between user programs, or new layers, and the operating
system a trivial problem. 5 Features are easily added with-
out having to modify LAP6. The F R E E meta command
provides layered access to an unused block within LAP6,
which the user can assign to a meta command of his own
design. Except for its proximity to LAP6, the access is the
same as for any user program which LAP6 can LOAD
from a file.

A user can ignore the layering conventions and reenter
LAP6 at any t ime from the console, recovering both cur-
rent manuscript and binary program. His program, how-
ever, can also use its own tape location (supplied by LAP6
during loading) to "layer in to" a completely different
system, which can subsequently reenter LAP6 under
program control automatical ly by executing the layering
tape instruction.

Read-only Layering. Since write and check operations
on the L I N C are t ime-consuming [12], LAP6 layering is
usually a process of destructive read operations; the
active layer generally does not save itself on the tape
before reading the next layer.

This "read-only layering" has the advantage of con-
serving memory as well as tape time, since reading the
tape amounts to "preset t ing." I t is est imated tha t LAP6
would need an average of 30-35 percent more core memory
per layer if it had to accommodate full presetting opera-
tions and generated tables. As it is, most layers are not
only self-modifying but also generate tables destructively
on top of finished portions of the layer. The COPY F I L E
command layer, for example, reduces its incoming 600.4-
instructions to 100-4- when active.

C o n c l u s i o n s

LAP6 has been in use on LINCs, LINC-Ss, and micro-
LINCs since the summer of 1967. Its success can be at
least partially attributed to having given top priority to
the general criteria of efficiency, reliability, and operational
simplicity as they are understood in the on-line environ-
ment. The small memory was found to influence functional
specifications less than other considerations and perhaps
operated with a positive effect on the criterion of simplic-
ity. Compromises were, of course, necessary, but we also
found that operating features which may seem highly
desirable, for example, to a professional in the computer
field, can be so much excess baggage in an on-line applica-
tions environment.

To minimize the inconvenience, special memory "index" regis-
ters, which on the LINC are generally preset anyway, are used to
hold the linkage.

The system's most popular features are its editing
facility, its s traightforward command and filing structure,
and its documentation. In addition to the operating in-
structions, the for ty page L A P 6 Handbook [3] includes a
description of the L I N C programming language, notes on
structure and LAP6 configuration, and recovery pro-
cedures in case of machine or tape failure.

The system was used for 6 months by 15 colleagues a t
Washington Universi ty before becoming generally avail-
able. The period was adequate to establish reasonable
reliability, and this group also contributed several simplify-
ing functional changes.

The preparat ion of LAP6 involved 5 months for specify-
ing and general planning, 2 for documenting, and 13 for
algorithm study, programming, and check-out. I t has
approximately 4600 instructions. Our experience with it
has demonstrated the feasibility of providing a reliable
and efficient on-line operating system, useable in a var ie ty
of environments, and running on a very small computer.

Acknowledgment. The author is grateful to Dr. Je rome
R. Cox, Jr., for several helpful suggestions.

RECEIVED JANUARY, 1970; REVISED MARCH, 1970

REFERENCES

1. CLARK, W. A., AND MOLNAR, C. A description of the LINC.
In Computers in Biomedical Research, Vol. 2, R. W. Stacy,
and B. Waxman (Eds.), Academic Press, New York, 1965,
pp. 35-66.

2. BEST, R. L., AND STOCKEBRAND, W.C. A computer-integrated
rapid-access magnetic tape system with fixed address. Proc.
Western Joint Comput. Conf., ¥ol. 13, 1958, Spartan Books,
New York, pp. 42-46.

3. WILKES, M.A. LAP6 handbook. Tech. Rep. No. 2, Computer
Research Lab. Washington U., St. Louis, Mo., May 1, 1967.

4. Convocation on the Mississippi, Proc. Final LING Evaluation
Program Meeting, Washington U., St. Louis, Mo., Mar.
18-19, 1965.

5. FRANKFORD, C., AND ELLIS, R.A. LIME (LING Macro Ex-
pander). Tech. Memo. No. 3, Computer Systems Lab
Washington U., St. Louis, Mo., Aug. 24, 1966.

6. MACK, H.L. An introduction to BLS: the BASIC language
system. Tech. Memo. No. 95, Computer Systems Lab.
Washington U., St. Louis, Mo., Mar. 1970.

7. GRAESSEa, S., AND ELLIS, R. A. Direct utilization of flow-
charts to represent macromodular systems. Computer
Systems Lab. Tech. Memo. No. 60, Washington U., St.
Louis, Mo., Apr. 1968.

8. ELLIS, R. A., GRAESSER, S. M., BARRY, C. D., AND MARSHALL,
G.R. MOLGRAPH: a program to manipulate and display
molecular models. Tech. Memo. No. 86, Computer Systems
Lab. Washington U., St. Louis, Mo., July 1969.

9. WILKES, M.A. LAP5 : LING assembly program. Proc. DECUS
Spring Syrup., May 1966, Digital Equipment Corp., May-
nard, Mass., pp. 43-50.

10. - - . Scroll editing: An on-line algorithm for manipulating
long character strings. IEEE Trans. Computers (to be
published).

11. - - . An algorithm for fast tape file copying. Computer Sys-
tems Lab. LINC Doe. No. 76, Washington U., St. Louis,
Mo., Feb. 1970.

12. - - , AND CLARK, W.A. Programming the LINC, 2nd ed.
Computer Systems Lab., Washington U., St. Louis, Mo.,
Jan. 1969.

414 Communications of the ACM Volume 13 / Number 7 / July, 1970

